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Extensive �asymptotic� spatiotemporal chaos is comprised of statistically similar subsystems that interact
only weakly. A systematic study of transient spatiotemporal chaos reveals extensive system behavior in all
three reaction-diffusion networks for various boundary conditions. The Lyapunov dimension, the sum of
positive Lyapunov exponents, and the logarithm of the transient lifetime grow linearly with the system size.
The unstable manifold of the chaotic saddle has nearly the same dimension as the saddle itself, and the stable
manifold is nearly space filling.
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I. INTRODUCTION

Transient spatiotemporal chaos is a generic pattern in ex-
tended nonequilibrium systems in which spatiotemporal dy-
namics spontaneously changes from chaotic to regular
�steady-state or periodic� behavior. Transient spatiotemporal
chaos was found in models for semiconductor charge trans-
port �1�, for the CO oxidation on single-crystal Pt surfaces
�2�, for a cubic autocatalytic reaction �3�, in models of tur-
bulent dynamics �4,5�, and in systems of coupled logistic
maps �6,7�. Experimental studies show that turbulence in
shear flow is transient �8�. “Stable chaos” �with a negative
Lyapunov exponent� is transient in systems of coupled one-
dimensional maps �9�.

Extended chaotic systems that have no long-range inter-
actions are expected to be uncorrelated at large length scales
and therefore should behave as a sum of their parts �10�.
Then spatiotemporal chaos is extensive, and the spectrum of
Lyapunov exponents converges to a function that is inten-
sive. This implies that the attractor dimension �Lyapunov
dimension� grows in direct proportion to the volume of the
system �11,12�. While extensivity in �asymptotic� spatiotem-
poral chaos has been studied for a while �11–16�, extensivity
in transient spatiotemporal chaos is rather unexplored �2,17�.

The average lifetime of transient spatiotemporal chaos
typically grows exponentially with the volume of the system
�3,18,19�. The origin of this exponential scaling is most
likely due to the probability for randomly uncorrelated re-
gions generating a global pattern that initiates the collapse of
spatiotemporal chaos �1,17,20�. This feature of transient spa-
tiotemporal chaos particularly motivates more detailed stud-
ies on extensive properties in transient dynamics.

This paper systematically explores and verifies extensivity
of transient spatiotemporal chaos in three reaction-diffusion
networks and a variety of boundary conditions. Section II
introduces the three excitable reaction-diffusion networks
with Gray-Scott �GS� �21�, Bär-Eiswirth �BE� �22�, and
Wacker-Schöll �WS� �1� reaction dynamics. The lifetime of
transient spatiotemporal chaos is discussed in Sec. III, and
the Lyapunov spectra and dimensions are investigated in Sec.

IV. Section V describes dimensional properties of the chaotic
saddle, and Sec. VI focuses on various densities and their
qualitative statistical interpretations.

II. REACTION-DIFFUSION NETWORKS

The networks consist of N diffusively coupled, identical,
and continuous-time dynamical elements. At each network
node n �n=1,2 , . . . ,N� the uncoupled dynamics is given by
dxn /dt=F�xn� with xn as a d-dimensional state vector. The
reaction-diffusion network is given by

dxn

dt
= F�xn� + D�

j=1

N

GnjHx j . �1�

D is a global coupling parameter. H is a d�d diagonal ma-
trix representing the relative diffusion of each species. G is
an N�N symmetric Laplacian matrix required to meet the
condition � j=1

N Gij =0. For a regular network in one dimension
the coupling matrix G is

Gij = �ij
2 = �i,j−1 − 2�ij + �i,j+1, �2�

with i , j=1,2 , . . . ,N. The indices are equivalent modulo N
for periodic boundary conditions and Gi1=�i2−�i1 and GiN
=�i,N−1−�iN for no-flux boundary conditions. In the presence
of a single shortcut of length k between node 1 and k+1 the
coupling matrix becomes

Gij = �ij
2 + �i1�� j,k+1 − �ij� + �i,k+1�� j1 − �ij� . �3�

The coupling strength parameter D controls the characteristic
length scale. From the rescaling of Eq. �1� it follows that the
general characteristics of the system remain the same if N
and D are both increased while holding N /�D constant. If N
goes to infinity with N /�D held constant the system ap-
proaches a continuous form. On the other hand if N �and
hence D� is made too small discretization effects will start to
become significant and eventually the system will no longer
be able to support chaos. In this paper D is large enough for
the networks to be good approximations for the continuum
system, except where noted otherwise.

We consider three excitable dynamical systems F: the GS
�21�, the BE �22�, and the WS �1� systems. Each of the
systems consists of two species �d=2�, so each xn is a two-
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dimensional vector. Thus, the uncoupled system does not ex-
hibit chaos, and spatiotemporal chaos is induced by the dif-
fusive coupling of the excitable dynamical elements in Eq.
�1�.

The Gray-Scott system �21� represents an open autocata-
lytic reaction A+2B→3B and B→C. The equations are

F��a

b
	
 = �1 − a − �ab2

�ab2 − �b
	, H = �1 0

0 1
	 , �4�

where a and b are dimensionless species concentrations and
� and � are bifurcation parameters. In the parameter regime
of coupling-induced spatiotemporal chaos the function F has
three fixed points: Sn= �1,0� is a stable node that exists
for all values of � and �, and the additional fixed points
Sf = ��1−�1−4�2 /�� /2, �1+�1−4�2 /�� /2�� and Ss= ��1
+�1−4�2 /�� /2, �1−�1−4�2 /�� /2�� exist for values of �
above the saddle node bifurcation point �sn=4�2. When �
��sn, Ss is a saddle point and within the range 2���4, Sf

is an unstable focus for values of � below the subcritical
Hopf bifurcation point �H=�4 / ��−1�. The parameter range
��c ,�H� yields wave-induced spatiotemporal chaos, with �c
being the critical threshold for traveling-wave solutions �3�.
For �=2.8, �c�33 and �H�34.1. In the Gray-Scott net-
work �Eqs. �1� and �4�� the spatiotemporal chaos is ŠIlnikov-
like; a typical trajectory at a network node spirals away from
the unstable focus toward the stable node and then is rein-
jected into the neighborhood of the unstable focus by the
propagating reaction-diffusion front �23�. For the calcula-
tions in this paper we have used the parameters �
� �33.5,33.7,33.9 and �=2.8.

The Bär-Eiswirth system �22� describes a surface reaction
model for the oxidation of CO on Pt and is given by

F��a

b
	
 = �a

�
�1 − a��a −

b + 	






f�a� − b
�, H = �1 0

0 0
	 , �5�

and

f�a� = �0 if a � 1/3
1 − 6.75a�a − 1�2 if 1/3 � a � 1

1 if a � 1.
�

a represents the activator concentration and b represents the
inhibitor concentration. 
, 	, and � are bifurcation param-
eters, with � determining the difference in time scale be-
tween the slow variable b and the fast variable a. In the
parameter regime of coupling-induced spatiotemporal chaos
the function F has three relevant fixed points: a stable node
Sn= �0,0�, a saddle point Ss= � 	


 ,0�, and an unstable focus
which must be computed numerically. Additional fixed
points at �1,1� and � 1+	


 ,1� are not relevant to the region of
phase space in which chaos exists �18�. In the Bär-Eiswirth
network �Eqs. �1� and �5�� a backfiring instability is reported
to be the origin of spatiotemporal chaos; the traveling pulses
become unstable to allow re-excitation behind the pulse to
create new pulses �22,24,25�. In this paper we use the param-
eters 
=0.84, 	=0.07, and �=0.12.

The Wacker-Schöll system �1� describes charge transport
in a simplified model of layered semiconductors and is given
by

F��a

b
	
 = � b − a

�b − a�2 + 1
− �a


�j0 − �b − a��
�, H = �1 0

0 d
	 , �6�

where a represents the interface charge density and b repre-
sents the dimensionless voltage �1�. The bifurcation param-
eter j0 represents normalized external current, 
 determines
the time scale of the system, d is an effective diffusion con-
stant, and � is an internal system parameter �26�. In the pa-
rameter regime of coupling-induced spatiotemporal chaos
the function F has an unstable focus at �j0 / ��j0

2+1��� , j0
+ j0 / ��j0

2+1���� and a stable limit cycle. In the Wacker-Schöll
network �Eqs. �1� and �6�� a Hopf bifurcation as temporal
instability and a Turing bifurcation as diffusive instability
cause the irregular spatiotemporal spiking pattern in spa-
tiotemporal chaos �26�. We use the parameters 
=0.02, �
=0.05, j0=1.21, and d=8, for which the system is near a
codimension-2 Turing-Hopf bifurcation point.

All of these three dynamical systems have an excitable
attractor �either node or limit cycle� such that strong enough
stimuli can cause large excursions from the attractor. In the
BE and GS systems the stable manifold of the saddle acts
like a separatrix between excited states and states of imme-
diate return to the attractor. In the WS system the limit cycle
is attracting but not Lyapunov stable. Its excitation cycles
grow continuously with increasing perturbation from the
limit cycle, and their size is large in comparison to the limit
cycle already for small perturbations from the limit cycle. In
all three systems, spatiotemporal chaos is introduced by dif-
fusive coupling, and regular attractors are accessible in the
case of the spatially homogeneous system. These systems
differ in their coupling as the GS system has equal diffusivi-
ties, the BE system has zero diffusivity for one species, and
the WS system has a diffusion-driven Turing instability. The
bifurcation scenario for the uncoupled systems is also differ-
ent: the GS system, Eq. �4�, reaches the parameter regime of
spatiotemporal chaos, in which there is no limit cycle
present, via a subcritical Hopf bifurcation; the BE system,
Eq. �5�, reaches the parameter regime of spatiotemporal
chaos, in which there is no limit cycle present, via a super-
critical Hopf bifurcation that generates an unstable focus and
a stable limit cycle, which disappears via a saddle loop bi-
furcation; in the parameter regime of spatiotemporal chaos
the WS system has a stable limit cycle that is generated via a
supercritical Hopf bifurcation.

III. LIFETIME OF TRANSIENT
SPATIOTEMPORAL CHAOS

Earlier studies have reported that spatiotemporal chaos is
transient in the one-dimensional WS �1�, the two-
dimensional BE �2�, and the one- and two-dimensional GS
�3� models. After a regime of sustained spatiotemporal chaos
with a rapid decay of spatial correlations and a positive larg-
est Lyapunov exponent, the systems exhibit a spontaneous
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system intrinsic collapse to a regular state �Figs. 1�a�–1�e��.
Such a sudden collapse points to the coexistence of a chaotic
saddle with the regular attractor�s� �17�.

For the GS and the BE systems spatiotemporal chaos col-
lapses to a spatially homogeneous stable steady state, in
which the dynamics at each network node reaches the
asymptotic stable steady state Sn of the uncoupled system.
This spatially homogeneous state represents the attractor on
the synchronization manifold �18� in Eq. �1�. For both sys-
tems the transient spatiotemporal chaotic pattern is charac-
terized by an irregular distribution of black patches, in which
trajectories of neighboring network nodes approach the
stable steady state Sn of the homogeneous system �Figs. 1�a�
and 1�b�� together. In the WS system the transient pattern is
characterized by an irregular spiking �Figs. 1�c�–1�e��. The
lighter color corresponds to trajectories of neighboring net-
work nodes being closer to the stable limit cycle of the ho-
mogeneous system, whereas the dark spots correspond to
neighboring trajectories away from the stable limit cycle.
Our simulations showed that the asymptotic regular state was
periodic in time with various spatial shifts �27�.

Transient spatiotemporal chaos is often characterized by
the rate at which an ensemble of systems with different ini-
tial conditions collapses �1,2,17�, since the transient dynam-
ics can be very long lived. We calculate the average lifetime
�T� for transient spatiotemporal chaos explicitly for all three
systems. For the Gray-Scott and the Bär-Eiswirth systems,
spatiotemporal chaos only collapsed to the stable node on the
synchronization manifold, and the lifetime T of transient spa-
tiotemporal chaos is determined from

T = inf
t
�max

n
�xn�t� − �

m

xm�t�
N �



� 10−6� ,

where � · � denotes the maximum norm over the components
of x. Transient spatiotemporal chaos in the Wacker-Schöll

system always collapsed into a periodic asymptotic state, and
the lifetime T is determined by tracking a �finite time� maxi-
mum Lyapunov exponent �28�. When the maximum
Lyapunov exponent—averaged over a gliding window of
150 000 time units—drops below zero, the system is deemed
to have reached a nonchaotic state starting at the beginning
of the window �29�.

Figures 2�a�–2�c� show that the average transient lifetime
�T� of spatiotemporal chaos increases exponentially with the
network size N for all three systems. Hence, ln�T� is an ex-
tensive quantity. The rate at which ln�T� increases with N
�slope of the linear fit in Fig. 2� depends on the boundary
conditions, which is consistent with earlier studies on the
Gray-Scott system �3,18,30� and similar to results for the
two-dimensional Bär-Eiswirth system �2�. If only the larger
values of N are considered the slopes are quite similar to
each other and it is possible that they converge as N→. For
example, if only data points for �T��105 are fitted the slopes
for periodic and no-flux boundary conditions agree to within
10% for the Gray-Scott model, which is similar to how much
the slopes change when shifting the cutoff from �T��104 to
�T��105.

This independence of the slopes from boundary condi-
tions is supported from a qualitative argument. Exponential
scaling of the average lifetime with the network size N arises
if a system is comprised of weakly interacting and statisti-
cally uncorrelated units of length �. If P is the probability for
a unit � to be conducive to loss of chaos at any moment of
time, then spatiotemporal chaos collapses with the probabil-
ity PN/�, when all units are in a state conducive to collapse
�17,20�. The logarithm of the average lifetime is then ln�T�
��−N /��ln P. If a boundary condition changes the probabil-
ity for collapse in one of the units to Q �31�, then
the logarithm of the average lifetime would be ln�T�
�−ln�QP�N/�−1��= �−N /��ln P−ln�Q / P�, which does not af-

Space

Ti
m
e

(b)(a) (c) (d) (e)

FIG. 1. Spatiotemporal pattern of the variable a during the collapse of spatiotemporal chaos for �a� the GS system ��=33.7, �=2.8,
D=16, N=210, and 240 time units shown�, �b� the BE system �
=0.84, 	=0.07, �=0.12, D=16, N=200, and 240 time units shown�, and
�c�–�e� the WS system �
=0.02, �=0.05, j0=1.21, d=8, D=0.25, and 24 000 time units shown� with different network sizes �N=500 in �c�,
N=460 in �d�, and N=420 in �e��. The dotted line represents the time of collapse as determined by our algorithm, with the transient lifetimes
�a� T=4 574 539, �b� T=3 600 582, �c� T=24 794, �d� T=491 481, and �e� T=32 531. The pattern in �c� was observed often, with the initial
wavy distortions from periodicity disappearing for large simulation times. The patterns in �d� and �e� were less common. In �d� the
asymptotic state is rotated in space and time, which allows a spatial period that is a half-integer fraction of the system size �27�. The
numerical integration used periodic boundary conditions and a fourth-order Runge-Kutta integration method with a numerical integration
time step of �t=0.003 for the GS and BE systems and �t=0.03 for the WS system.
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fect the slope. This line of reasoning is of course valid only
if Q�0 �32�.

Figure 2�b� also reveals that ln�T� shows significant de-
viation from extensivity in the Wacker-Schöll system, espe-
cially for smaller network sizes N and periodic boundary
conditions. As the number of nodes increases the oscillations
of ln�T� around the linear fit decrease in amplitude and
match more closely the expected extensivity. One possible
explanation for the deviation from extensivity is that spatial
period must be an integer multiple of network size. This
hypothesis is supported by the fact that the most commonly
observed asymptotic pattern �1� as well as the oscillation of
the deviation from extensivity of ln�T� both have a spatial

period of approximately 100 nodes. For larger networks the
deviation from extensivity decreases since it becomes easier
to approximate any given spatial period with an integer frac-
tion of the network size.

An earlier study showed for the Gray-Scott system that
the average lifetime is related to the number of unstable
transverse modes along a typical trajectory within the syn-
chronization manifold �18�. The number of unstable trans-
verse modes as well as ln�T� are extensive quantities. Both
quantities increase linearly with the network size for a given
coupling strength D, and they both increase linearly with
1 /�D for a given network size N.

IV. LYAPUNOV SPECTRUM AND RELATED QUANTITIES

Measures that quantify chaotic attractors can also char-
acterize chaotic saddles �transient spatiotemporal chaos�
for large network sizes if the lifetimes are long enough
for the measures to converge. The Lyapunov spectra for
the reaction-diffusion networks in Eq. �1� were computed
numerically �33� from infinitesimal displacement vec-
tors yn about xn that evolve according to �yn /�t=J �xn

yn

+D� j=1
N GnjHy j, where J �xn

is the Jacobian of F evaluated at
xn. With periodic Gram-Schmidt orthonormalization of the
yn vectors every Trn time units and with the logarithm of the
corresponding normalization coefficients being added to a
running tally 	i, the �finite time� Lyapunov exponents are
given by 	i / t for any time t �33�. Fourier modes were used as
initial perturbations, although the choice of initial perturba-
tion should have little effect on the final result �33�. A renor-
malization interval of Trn=3 time units was used in all cases,
and simulation times varied between 2.8�105 and 5.6
�106 time units. The Lyapunov spectra were robust to
changes in renormalization interval and integration time step
�34�. Some of the systems collapsed into a steady or periodic
state part way through the simulation �35�. If the largest
Lyapunov exponent for a gliding window of length 3000
time units fell below zero, all samples after the beginning of
this window were discarded. Figure 3 shows a typical con-
vergence behavior of a Lyapunov exponent; it happens
slowly. The convergence error was estimated as the maxi-
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FIG. 2. Average transient lifetime �T� versus number of network
nodes N for �a� the Gray-Scott, �b� the Wacker-Schöll, and �c� the
Bär-Eiswirth systems. Various boundary conditions were used, in-
cluding no flux �+�, periodic ���, periodic with shortcut of length
50 ���, and periodic with shortcut of length N /2 ���. Each data
point was determined from at least 104 random initial conditions.
The error bar �1 standard deviation, not plotted here� for each data
point is on the order of �T� �18�. The lines show least-squares linear
fits of the average transient lifetimes. The linear fit includes the
range of network sizes N for which the average lifetime was con-
sistently greater than 104, in order to exclude artifacts from the
exaggerated significance of boundary conditions for small N. The
lifetimes for small N can also be affected by the initial transient
before the chaotic saddle is reached. All the other parameters and
simulation procedures are the same as in Fig. 1.
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FIG. 3. Convergence behavior of the largest �finite time�
Lyapunov exponent �1 for the Gray-Scott system with simulation
time t. This convergence behavior is typical for Lyapunov expo-
nents in all three models. The error is estimated by computing the
maximum difference between the final value and any value from the
second half of the simulation.
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mum difference between the final �finite time� Lyapunov ex-
ponent and any intermediate value from the second half of
the simulation.

Spatiotemporal chaos is said to be extensive if the spec-
trum of Lyapunov exponents �i converges to a function
f�i /N� that is intensive. This implies that the attractor dimen-
sion increases in proportion to the system size N and that a
dimension density exists �11�. We will show that transient
spatiotemporal chaos also fulfills these criteria for all three
models.

Figure 4 shows a single Lyapunov exponent �i for each
network size N, with the index i=N /20�D+1 scaled in pro-
portion to the network size N. �N/�20�D�+1 converges with N in
good approximation. This behavior is consistent with the
spectrum of Lyapunov exponents converging to a function
that is intensive, and with the existence of a Lyapunov spec-
trum density. Qualitatively similar convergence behavior was
found for the Lyapunov spectrum in the Bär-Eiswirth model
and in the Wacker-Schöll model.

The Lyapunov dimension �DL� is conjectured to be equal
to the information dimension for typical attractors �36�; it is
defined as

DL = j +
�1 + ¯ + � j

�� j+1�
, �7�

where j is the largest integer for which �i=1
j �i�0. For cha-

otic saddles the information dimension has a correction term
proportional to the escape rate, which is negligible for large
enough system sizes such as those considered in this paper
�37�.

Figure 5�a� shows that the Lyapunov dimension DL in-
creases linearly with the network size N for all three
reaction-diffusion network models with varying system pa-
rameters. The deviation of the DL values from linearity was
small for all systems studied; a representative example for
the Gray-Scott system is given in Fig. 5�b�. These findings
indicate that DL is an extensive quantity during the transient
phase of spatiotemporal chaos. Extensive transient spa-
tiotemporal chaos in these models was also found for various
boundary conditions, including periodic and no-flux bound-

ary conditions as well as periodic with the presence of short-
cuts in the network. The results are summarized in Table I.

The sum of positive Lyapunov exponents ��+� represents
an upper bound for the Kolmogorov-Sinai entropy �36�. For
chaotic saddles this upper bound can be refined by subtract-
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FIG. 4. The scaled index Lyapunov exponent �N/�20�D�+1 vs net-
work size N for the Gray-Scott system. Lyapunov exponents are
indexed starting from �1, and linear interpolation is used in cases
where the index i=N /20�D+1 is not an integer. The multiple data
points for certain values of N correspond to different initial condi-
tions and are close together. All the other parameters are the same
as in Fig. 1�a�.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

D
L

N

-0.13
-0.12
-0.11
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05

300 400 500 600 700 800 900 1000

D
L

-δ
D

N

N

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400

Σ+

N

(b)

(a)

(c)

FIG. 5. �a� Lyapunov dimension DL versus network size N for
five systems with periodic boundary conditions: Bär-Eiswirth model
with 
=0.84, 	=0.07, �=0.12, and D=16 �� �; Gray-Scott model
��=2.8, D=16� with �=33.5 ���, �=33.7 �+�, and �=33.9 ���;
and Wacker-Schöll model with 
=0.02, �=0.05, j0=1.21, d=8, and
D=0.25 ���. The Lyapunov dimension for the Bär-Eiswirth model
�� � and the Gray-Scott model ��=33.7, +� have very similar val-
ues, making them hard to distinguish in the graph, although their
Lyapunov spectra are different. The full lines correspond to a least-
squares linear fit of the corresponding data points. The error for
each data point, not plotted in the figure, was estimated by comput-
ing the maximum difference between the final value of DL and any
intermediate value from the second half of the simulation; errors
were smaller than 2.5% of the data point values and typically less
than 0.3% for Gray-Scott and Bär-Eiswirth systems. �b� Deviation
of DL values from the linear fit in �a� for the Gray-Scott system
with �=33.7. For this system DL was calculated for different initial
conditions for each network size N to estimate the convergence
behavior. These data points were plotted in both figures, �a� and �b�,
but they are too close to be distinguished in �a�. The horizontal line
represents the y intercept of the linear fit, which was not subtracted
when plotting deviation from the linear trend. �c� Sum of positive
Lyapunov exponents �+ versus network size N for the same sys-
tems as in �a�. The values for the Wacker-Schöll system have been
multiplied by 20 to improve clarity.
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ing the escape rate �38�. Figure 5�c� and Table I show that �+

is an extensive quantity for all three models with varying
system parameters and boundary conditions.

The Gray-Scott system was simulated for four different
boundary conditions: periodic, no-flux, periodic with an
added shortcut in the network of length k=50 �k�N�, and
with an added shortcut of length k=N /2. Table I shows that
the rate at which the Lyapunov dimension DL �and also �+�
increases with the network size N is rather independent of
these boundary conditions, but their Y intercepts are signifi-
cantly different for different boundary conditions. This is
consistent with the finding in Sec. III for the rate at which the
average transient lifetimes �T� increase with N. For a fixed
network size, Fig. 2 and Table I reveal that �T�, DL, and �+

are largest for no-flux boundary conditions, second largest
for periodic boundary conditions, and third largest for the
presence of a shortcut in the network. There are, however,
differences in the rankings for �T�, DL, and �+ for the two
different types of shortcut length.

In the following we present a qualitative argument for
why the linear fit of Lyapunov dimension DL vs network size
N has nearly zero Y intercept for all systems with periodic
boundary conditions, as seen from Fig. 5�a� and Table I. If
we assume that subsystems in reaction-diffusion networks do
not interact across large distances, the Lyapunov dimension
should not be affected by transformations that alter the glo-
bal topology but conserve the local network structure and the
total number of nodes. Figure 6 shows such a transformation
that turns two networks of N nodes into one network of 2N
nodes. Since the Lyapunov dimension is additive among

nonconnected systems we expect that DL�2N�=2DL�N�. To-
gether with the linear ansatz, DL=aN+b, it follows that b
=0. This indicates that the Lyapunov dimension for very
large system sizes and long simulation times follow a linear
law with zero intercept. For systems with no-flux boundary
conditions this line of reasoning is not valid since two such
systems cannot be combined into one without changing the
local structure �i.e., two of the no-flux boundaries would
have to be removed�.

For a ring network we also vary the coupling parameter D
while keeping the network size N fixed. We find that the
Lyapunov dimension DL as well as the sum of positive
Lyapunov exponents �+ increases linearly with 1 /�D for all
three reaction-diffusion networks and various system param-
eters �Table I�.

The general characteristics of the reaction-diffusion net-
works in Eq. �1� are conserved if N and D vary such that
N /�D is fixed �Sec. II�. Table I shows that in this case DL as
well as �+ are constant for a wide range of N and D values.

TABLE I. Summary of Lyapunov dimension DL and sum of positive Lyapunov exponents �+ for the Bär-Eiswirth �BE� model �

=0.84, 	=0.07, �=0.12�, the Gray-Scott �GS� model ��� �33.5,33.7,33.9 , �=2.8�, and the Wacker-Schöll �WS� model �
=0.02, �
=0.05, j0=1.21, d=8� for different system parameters and different boundary conditions. A least-squares linear fit was made for DL and
�+ versus network size N, and a least-squares linear fit was made for DL and �+ versus 1 /�D with coupling parameter D. A least-squares
constant fit was done for DL and �+ for fixed effective system sizes N /�D=const.

System Fixed parameter Boundary condition Linear fit for DL rms error of fit Linear fit for �+ rms error of fit

BE N=500 Periodic −1.499+128.9 /�D 0.2421 −0.06705+3.818 /�D 0.007420

BE D=16 Periodic −0.2175+0.06151N 0.03850 −0.02241+0.001807N 0.002020

BE N
�D

=250 Periodic 62.15 0.7946 1.813 0.02769

WS D=0.25 No flux 0.9767+0.03539N 0.3115 0.001189+1.791�10−5N 0.0003796

WS D=0.25 Periodic 0.2272+0.03606N 0.2304 0.0001183+1.890�10−5N 0.0003587

WS N
�D

=2000 Periodic 36.99 0.6054 0.02022 0.001271

GS, �=33.5 N=500 Periodic −0.05447+130.5 /�D 0.01766 −0.03049+2.872 /�D 0.004593

GS, �=33.5 D=16 Periodic −0.1074+0.06540N 0.02012 −0.01160+0.001393N 0.002511

GS, �=33.5 N
�D

=250 Periodic 65.05 0.2733 1.450 0.07389

GS, �=33.7 N=500 Periodic −0.07992+122.4 /�D 0.01723 −0.01816+2.281 /�D 0.001831

GS, �=33.7 D=16 Periodic −0.1148+0.06125N 0.02296 −0.01462+0.001126N 0.003871

GS, �=33.7 N
�D

=250 Periodic 61.11 0.03848 1.138 0.04028

GS, �=33.7 D=16 No flux 0.3643+0.06126N 0.007197 0.01095+0.001122N 0.001092

GS, �=33.7 D=16 Shortcut, k=50 −1.528+0.06121N 0.02385 −0.03057+0.001117N 0.001562

GS, �=33.7 D=16 Shortcut, k=N /2 −1.233+0.06124N 0.02963 −0.04299+0.001118N 0.004419

GS, �=33.9 N=500 Periodic −0.08079+103.3 /�D 0.03807 −0.01055+1.203 /�D 0.002227

GS, �=33.9 D=16 Periodic −0.1022+0.05175N 0.01903 −0.009298+0.0006021N 0.001796

GS, �=33.9 N
�D

=250 Periodic 51.63 0.07226 0.5970 0.01081

FIG. 6. A transformation that turns two ring networks each hav-
ing N nodes into one network with 2N nodes, without changing the
local network structure or the total number of nodes.
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Figure 7 also confirms for the Bär-Eiswirth model that the
Lyapunov dimension is constant over a range of coupling
parameters D, when N /�D is fixed. Significant deviations
from a constant Lyapunov dimension exist for small values
of D, where the network model deviates significantly from
the continuum model. DL was about 58% higher when D
=0.3136 compared to the regime of constant dimension �Fig.
7�. Two simulations with different initial conditions were
made for each of the coupling parameters, D=4 and 16, and
the results are close enough that the difference between the
two simulations is difficult to see on the graph in Fig. 7. For
the Gray-Scott systems �with three different system param-
eters �Table I�� the Lyapunov dimension was constant �within
1.4%� for coupling parameters D even down to D=1, which
is close to the point where the system can no longer support
chaos �D�0.7�. The Wacker-Schöll system had a variation
in DL of about 4% and a variation in �+ of about 19% over
the range of coupling parameters, 0.04�D�0.25, which are
close to the value for which the system can no longer support
chaos. The qualitative behavior of �+ was similar to that of
DL, but in general had larger relative variations.

The qualitative argument for why the range of D for
which DL and �+ are constant is bounded from below for all
three reaction-diffusion networks follows from the excitabil-
ity property. If D is low enough, the coupling term in Eq. �1�
can no longer provide superthreshold perturbations to perturb
the system away from the stable rest state and sustain spa-
tiotemporal chaos.

V. CHAOTIC SADDLE AS QUASIATTRACTOR

Hunt et al. conjectured a formula for computing the di-
mension of the stable and unstable manifolds �Ds ,Du� of a
chaotic saddle based on the Lyapunov spectrum and escape
rate �37�. In the case of very low escape rate their formula
reduces to �17�

Ds = 2N −
�

�1
,

Du = DL −
�

�� j+1�
, �8�

where 2N is the dimension of the phase space, �= �T�−1 is the
escape rate, �1 is the largest Lyapunov exponent, DL is the

Lyapunov dimension, and j is the largest integer for which
�i=1

j �i�0.
When the lifetime is long enough that the computation of

the Lyapunov spectrum is feasible, the stable manifold has a
dimension nearly equal to that of the entire phase space and
the unstable manifold has a dimension nearly equal to the
Lyapunov dimension of the saddle. For instance, in the case
of the Wacker-Schöll ring network �
=0.02, �=0.05, j0
=1.21, d=8,D=0.25� with N=600 nodes, �T�=4.19�105,
�1=0.002 76, j=22, and with �23=−0.003 21, the stable and
unstable manifolds of the chaotic saddle have dimensions

Ds = 2N − 0.000 865,

Du = DL − 0.000 744, with DL = 22.02 � 0.14.

The uncertainty due to convergence of DL is approximately
0.14, which is more than two orders of magnitude larger than
the corrections. As N→ we have �→0 and so Ds→2N and
Du→DL.

For the Bär-Eiswirth ring network �
=0.84, 	
=0.07, �=0.12, D=16� with N=400 nodes, �T�=7.01
�105, �1=0.131, j=24, and with �25=−0.129, the dimen-
sions of the stable and unstable manifolds are

Ds = 2N − 0.000 010 9,

Du = DL − 0.000 011 1, with DL = 24.386 � 0.053.

For the Gray-Scott ring network ��=33.7, �=2.8, D
=16� with N=200 nodes, �T�=1.64�106, �1=0.0792, j
=12, and with �13=−0.107, the dimensions of the stable and
unstable manifolds are

Ds = 2N − 0.000 007 70,

Du = DL − 0.000 005 68, with DL = 12.124 � 0.012.

Following the argumentation by Tél and Lai �17�, the cha-
otic saddle behaves like a quasiattractor for all three models,
since the unstable manifold of the chaotic saddle has nearly
the same dimension as the saddle �Du�DL�, and since the
stable manifold is nearly space filling, i.e., the stable mani-
fold nearly forms a basin of attraction for the quasiattractor.
In addition, the dimension of the chaotic saddle is very close
to the dimension of an attractor with the same Lyapunov
spectrum �17�.

VI. INTENSIVE QUANTITIES

Densities can be defined from the extensive quantities DL
and ln�T�. The (Lyapunov) dimension density ��D� is given
by

�D = lim
N→

N−1DL, �9�

which describes the number of active degrees of freedom per
unit volume �15�. Likewise, the logarithmic-lifetime density
�T is defined as

20
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0 2 4 6 8 10 12 14 16

D
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D

FIG. 7. Lyapunov dimension DL vs coupling constant D for the
Bär-Eiswirth ring network �
=0.84, 	=0.07, and �=0.12�. The ef-
fective system size was held constant by varying the number of
nodes N according to N /�D=250. This system had particularly
large deviations from constant DL for small D.
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�T = lim
N→

N−1 ln�T� . �10�

From Sec. V it follows that the dimension density of the
stable manifold of the chaotic saddle �17�, �s=Ds /N, is about
d=2 for all our model systems since Ds�2N in Eq. �8� with
2N as the dimension of the phase space and with d=2 as the
dimension of the uncoupled dynamical system in Eq. �1�.
The dimension density of the unstable manifold of the cha-
otic saddle, �u=Du /N, is about �u=�D since Du�DL for all
our model systems. Due to these similarities we focus on the
dimension of the chaotic saddle ��D� in the following.

Table II shows that the dimension densities are rather
small for the chaotic saddle in all model systems, reflecting a
low degree of freedom per network node. This is consistent
with an earlier study by Strain and Greenside �2� for the
Bär-Eiswirth model in two spatial dimensions. Table II also
reveals that the dimension density �D does not depend on the
boundary condition. The logarithmic-lifetime density �T is
also rather low for all model systems with a dependence on
boundary conditions that appears to decrease as N→.

We qualitatively relate the densities to properties of the
weakly coupled subsystems in extensive transient spatiotem-
poral chaos. The exponential scaling of the average lifetime
with the network size �type-II supertransients �17�� can be
qualitatively explained by assuming weakly interacting cor-
related units of length �, with � approximately equal to the
correlation length of the system. At any moment of time each
of these units is conducive to loss of chaos with probability
P. Spatiotemporal chaos collapses when all units are in such
a conducive state �17�, which happens with probability PN/�.
The lifetime takes the form

�T� � P−N/� = e−�ln P��N/��. �11�

With Eq. �10� it follows that

�T =
− ln P

�
�12�

for finite N. �T can now be interpreted as having units of
number of coin tosses per unit length �. �T has the advantage
of being a single computable quantity �from Eq. �10��,
whereas the intuitive argument uses two quantities, � and P,
both of which are open to interpretation. The ratio ��� of
these densities

� = �T/�D �13�

defines an intensive quantity that depends neither on the net-
work size N nor on the coupling constant D since �T� as well
as DL is proportional to N /�D from Sec. IV. If �T is inter-
preted as having units of number of coin tosses per unit
length and �D is interpreted as being the number of active
degrees of freedom per unit length, then � has units of num-
ber of coin tosses per active degree of freedom. This quantity
is significant because it is intensive and independent of the
coupling strength, and thus suggests that transient spatiotem-
poral chaos in reaction-diffusion networks with homoge-
neous network structure can be understood from its local
dynamics.

Combining Eqs. �10� and �13� to

�T�−1 = e−�DL = �e−��DL �14�

leads to an intuitive argument for the escape rate from the
chaotic saddle in the limit N→ if we assume that � is
given. Equation �14� can be interpreted as the volume of a
hypercube of width e−�, if we ignore that the dimension of
the chaotic saddle is fractal, and if we ignore that DL is only
approximately the fractal dimension. This hypercube can be
considered as a hole in the chaotic saddle through which a
trajectory can escape into a nonchaotic state. Larger systems
have an attractor which resembles a set product of smaller

TABLE II. Logarithmic-lifetime density �T and Lyapunov dimension density �D for the BE model �

=0.84, 	=0.07, �=0.12, D=16�, the GS model ��=33.7, �=2.8, D=16�, and the WS model �

=0.02, �=0.05, j0=1.21, d=8, D=0.25� for different boundary conditions. Points were only considered
for the linear fit if they were within the range of N for which �T� was consistently larger than the cutoff value.

System Cutoff Boundary condition �D �T �=�T /�D

BE 104 Periodic 0.0615 0.0309 0.502

GS 104 No flux 0.0613 0.0685 1.12

GS 104 Periodic 0.0613 0.0831 1.36

GS 104 Shortcut, k=50 0.0612 0.0818 1.34

GS 104 Shortcut, k=N /2 0.0612 0.0820 1.34

WS 104 No flux 0.0354 0.00632 0.179

WS 104 Periodic 0.0361 0.00689 0.191

BE 105 Periodic 0.0615 0.0292 0.474

GS 105 No flux 0.0613 0.0718 1.17

GS 105 Periodic 0.0613 0.0788 1.29

GS 105 Shortcut, k=50 0.0612 0.0839 1.37

GS 105 Shortcut, k=N /2 0.0612 0.0757 1.24

WS 105 No flux 0.0354 0.00613 0.173

WS 105 Periodic 0.0361 0.00576 0.160
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systems, and the escape hole resembles a set product of iden-
tical low-dimensional boxes with edges that have a geomet-
ric mean of e−�.

VII. CONCLUSIONS

A systematic study reveals that transient spatiotemporal
chaos is extensive in three reaction-diffusion networks with
various boundary conditions. The Lyapunov dimension, the
sum of positive Lyapunov exponents, and the logarithm of
the transient lifetime grow linearly with the system size. This
indicates that even in the case of transient dynamics the
larger systems act as if they were comprised of weakly in-
teracting and statistically similar subsystems, with no new
collective phenomena arising when such subsystems connect
together. This might open up the possibility for modeling
transient spatiotemporal chaos with statistical mechanics
�13�.

The effective system size for a network with N nodes and
coupling parameter D is determined by N /�D. For a wide
variety of coupling parameters and network sizes the number
of active degrees of freedom �expressed in the Lyapunov
dimension� stays constant as long as the effective system size
is fixed. An upper bound for the entropy �expressed by the
sum of positive Lyapunov exponents� is also constant for a
fixed effective system size. Unless the coupling parameter D
is sufficiently small, the network model approaches the con-
tinuum model.

The spontaneous collapse of spatiotemporal chaos points
to the coexistence of a chaotic saddle with the regular attrac-
tor�s�. Applying the dimension formulas of Hunt et al. �37�,
we find for all three models that the dimension of the un-
stable manifold of the chaotic saddle is nearly the dimension

of the chaotic saddle, and the stable manifold of the chaotic
saddle is nearly space filling. Thus, the chaotic saddle be-
haves like a quasiattractor according to Tél and Lai �17�.

For extensive transient spatiotemporal chaos a dimension
density and a logarithmic-lifetime density can be defined. A
qualitative argument relates the escape rate from the chaotic
saddle to a hole through which a trajectory can escape into a
nonchaotic state. This hole has the form of a hyper-rectangle;
its dimension is the Lyapunov dimension, and its width is
determined by the ratio of logarithmic-lifetime and dimen-
sion densities.

The boundary conditions seemingly do not affect the di-
mension and logarithmic-lifetime densities, but do affect the
x intercepts of the graphs of Lyapunov dimension versus
network size and logarithmic-lifetime versus network size. It
would be interesting to study whether the choice of boundary
conditions shifts both the Lyapunov dimension and the
logarithmic-lifetime graphs by the same number of nodes. In
this case boundary conditions would change the effective
network size. Unfortunately, since the computation time re-
quired to compute the average lifetime grows exponentially
with the network size, the range of network sizes that are
currently computationally accessible by supercomputers is
not sufficient to determine the offset for different boundary
conditions accurately enough because the slopes converge
slowly.
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